3.174 \(\int \frac{\cot (c+d x)}{\sqrt{a+a \sec (c+d x)}} \, dx\)

Optimal. Leaf size=92 \[ -\frac{1}{d \sqrt{a \sec (c+d x)+a}}+\frac{2 \tanh ^{-1}\left (\frac{\sqrt{a \sec (c+d x)+a}}{\sqrt{a}}\right )}{\sqrt{a} d}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a \sec (c+d x)+a}}{\sqrt{2} \sqrt{a}}\right )}{\sqrt{2} \sqrt{a} d} \]

[Out]

(2*ArcTanh[Sqrt[a + a*Sec[c + d*x]]/Sqrt[a]])/(Sqrt[a]*d) - ArcTanh[Sqrt[a + a*Sec[c + d*x]]/(Sqrt[2]*Sqrt[a])
]/(Sqrt[2]*Sqrt[a]*d) - 1/(d*Sqrt[a + a*Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.0864493, antiderivative size = 92, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 5, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.238, Rules used = {3880, 85, 156, 63, 207} \[ -\frac{1}{d \sqrt{a \sec (c+d x)+a}}+\frac{2 \tanh ^{-1}\left (\frac{\sqrt{a \sec (c+d x)+a}}{\sqrt{a}}\right )}{\sqrt{a} d}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a \sec (c+d x)+a}}{\sqrt{2} \sqrt{a}}\right )}{\sqrt{2} \sqrt{a} d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

(2*ArcTanh[Sqrt[a + a*Sec[c + d*x]]/Sqrt[a]])/(Sqrt[a]*d) - ArcTanh[Sqrt[a + a*Sec[c + d*x]]/(Sqrt[2]*Sqrt[a])
]/(Sqrt[2]*Sqrt[a]*d) - 1/(d*Sqrt[a + a*Sec[c + d*x]])

Rule 3880

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> -Dist[(d*b^(m - 1)
)^(-1), Subst[Int[((-a + b*x)^((m - 1)/2)*(a + b*x)^((m - 1)/2 + n))/x, x], x, Csc[c + d*x]], x] /; FreeQ[{a,
b, c, d, n}, x] && IntegerQ[(m - 1)/2] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[n]

Rule 85

Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Simp[(f*(e + f*x)^(p +
 1))/((p + 1)*(b*e - a*f)*(d*e - c*f)), x] + Dist[1/((b*e - a*f)*(d*e - c*f)), Int[((b*d*e - b*c*f - a*d*f - b
*d*f*x)*(e + f*x)^(p + 1))/((a + b*x)*(c + d*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[p, -1]

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\cot (c+d x)}{\sqrt{a+a \sec (c+d x)}} \, dx &=\frac{a^2 \operatorname{Subst}\left (\int \frac{1}{x (-a+a x) (a+a x)^{3/2}} \, dx,x,\sec (c+d x)\right )}{d}\\ &=-\frac{1}{d \sqrt{a+a \sec (c+d x)}}+\frac{\operatorname{Subst}\left (\int \frac{2 a^2-a^2 x}{x (-a+a x) \sqrt{a+a x}} \, dx,x,\sec (c+d x)\right )}{2 a d}\\ &=-\frac{1}{d \sqrt{a+a \sec (c+d x)}}-\frac{\operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+a x}} \, dx,x,\sec (c+d x)\right )}{d}+\frac{a \operatorname{Subst}\left (\int \frac{1}{(-a+a x) \sqrt{a+a x}} \, dx,x,\sec (c+d x)\right )}{2 d}\\ &=-\frac{1}{d \sqrt{a+a \sec (c+d x)}}+\frac{\operatorname{Subst}\left (\int \frac{1}{-2 a+x^2} \, dx,x,\sqrt{a+a \sec (c+d x)}\right )}{d}-\frac{2 \operatorname{Subst}\left (\int \frac{1}{-1+\frac{x^2}{a}} \, dx,x,\sqrt{a+a \sec (c+d x)}\right )}{a d}\\ &=\frac{2 \tanh ^{-1}\left (\frac{\sqrt{a+a \sec (c+d x)}}{\sqrt{a}}\right )}{\sqrt{a} d}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+a \sec (c+d x)}}{\sqrt{2} \sqrt{a}}\right )}{\sqrt{2} \sqrt{a} d}-\frac{1}{d \sqrt{a+a \sec (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 0.0511051, size = 57, normalized size = 0.62 \[ \frac{\text{Hypergeometric2F1}\left (-\frac{1}{2},1,\frac{1}{2},\frac{1}{2} (\sec (c+d x)+1)\right )-2 \text{Hypergeometric2F1}\left (-\frac{1}{2},1,\frac{1}{2},\sec (c+d x)+1\right )}{d \sqrt{a (\sec (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

(Hypergeometric2F1[-1/2, 1, 1/2, (1 + Sec[c + d*x])/2] - 2*Hypergeometric2F1[-1/2, 1, 1/2, 1 + Sec[c + d*x]])/
(d*Sqrt[a*(1 + Sec[c + d*x])])

________________________________________________________________________________________

Maple [B]  time = 0.215, size = 259, normalized size = 2.8 \begin{align*}{\frac{1}{2\,ad \left ( \sin \left ( dx+c \right ) \right ) ^{2}} \left ( 2\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}\sqrt{2}\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\arctan \left ( 1/2\,\sqrt{2}\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}} \right ) + \left ( \cos \left ( dx+c \right ) \right ) ^{2}\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\arctan \left ({\frac{1}{\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}}} \right ) -2\,\sqrt{2}\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\arctan \left ( 1/2\,\sqrt{2}\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}} \right ) +2\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}-\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\arctan \left ({\frac{1}{\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}}} \right ) -2\,\cos \left ( dx+c \right ) \right ) \sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)/(a+a*sec(d*x+c))^(1/2),x)

[Out]

1/2/d/a*(2*cos(d*x+c)^2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*
x+c)+1))^(1/2))+cos(d*x+c)^2*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2
))-2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))+2*c
os(d*x+c)^2-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))-2*cos(d*x+c))*
(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)/sin(d*x+c)^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cot \left (d x + c\right )}{\sqrt{a \sec \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(cot(d*x + c)/sqrt(a*sec(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cot{\left (c + d x \right )}}{\sqrt{a \left (\sec{\left (c + d x \right )} + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)/(a+a*sec(d*x+c))**(1/2),x)

[Out]

Integral(cot(c + d*x)/sqrt(a*(sec(c + d*x) + 1)), x)

________________________________________________________________________________________

Giac [B]  time = 9.35424, size = 203, normalized size = 2.21 \begin{align*} \frac{\sqrt{2}{\left (\frac{2 \, \sqrt{2} \arctan \left (\frac{\sqrt{2} \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}}{2 \, \sqrt{-a}}\right )}{\sqrt{-a} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )} - \frac{\arctan \left (\frac{\sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}}{\sqrt{-a}}\right )}{\sqrt{-a} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )} + \frac{\sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}}{a \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}\right )}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

1/2*sqrt(2)*(2*sqrt(2)*arctan(1/2*sqrt(2)*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)/sqrt(-a))/(sqrt(-a)*sgn(tan(1/2*
d*x + 1/2*c)^2 - 1)) - arctan(sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)/sqrt(-a))/(sqrt(-a)*sgn(tan(1/2*d*x + 1/2*c)
^2 - 1)) + sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)/(a*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)))/d